"This study examined the effect of common mitochondrial treatments on specific mitochondrial components in a group of children diagnosed with ASD [autism spectrum disorder], some of which also were diagnosed with co-morbid mitochondrial disease."
That was the premise of the study results published by Leanna Delhey and colleagues [1] (open-access available here) and follows previous discussions suggesting that mitochondrial disease might not be totally unfamiliar to at least some autism (see here). Including some notable names on the authorship list previously linked to the area of mitochondrial functions in relation to autism (see here), the authors provide some important information about how specific mitochondrial function might be 'supported' by various interventions.
I'm not on this occasion going to venture into all the details discussed by Delhey but I do want to pick out some interesting titbits. First, of the 127 children diagnosed with an autism spectrum disorder (ASD), we are told that "15% of the sample was clinically diagnosed with mitochondrial disease." Bearing in mind this particular cohort might not be totally representative of the autistic population at large, 15% is not an insignificant figure. What this tells us is that as and when a diagnosis of autism is received, screening for a possible mitochondrial disorder should be initiated (yes, an autism diagnosis is a starting point not the finishing line and the diagnosis rarely exists in a diagnostic vacuum).
Next, various supplements were taken by participants, some of which have recognised effects on mitochondrial functions. Of particular note was the use of coenzyme Q10 (CoQ10) and carnitine; both of which have been discussed on this blog previously (see here and see here respectively) with the word 'mitochondrial' also being mentioned. Interestingly, a couple of other supplements are also included in the Delhey paper including fatty acids and folate; some of which I have to say, didn't immediately pop into my mind as being primarily mitochondrial-related (folate is though, still a hot topic when it comes to autism). The authors head into how said supplements might affect specific facets of mitochondrial function. It also reminded me that I really need to brush up on my knowledge of mitochondrial functions...
"This study provides empirical support for common mitochondrial treatments and demonstrates that the relationship between activities of mitochondrial components might be a marker to follow in addition to absolute activities." I'd agree that there is the beginnings of a roadmap for further study based on the Delhey results. That and including important parameters related to the presentation of autism and how it may/may not be affected by treating underlying mitochondrial disorder, and the scene is set for further recognition of how indeed, autism rarely exists in a diagnostic vacuum...
----------
[1] Delhey LM. et al. The Effect of Mitochondrial Supplements on Mitochondrial Activity in Children with Autism Spectrum Disorder. J Clin Med. 2017 Feb 13;6(2). pii: E18.
----------
Delhey LM, Nur Kilinc E, Yin L, Slattery JC, Tippett ML, Rose S, Bennuri SC, Kahler SG, Damle S, Legido A, Goldenthal MJ, & Frye RE (2017). The Effect of Mitochondrial Supplements on Mitochondrial Activity in Children with Autism Spectrum Disorder. Journal of clinical medicine, 6 (2) PMID: 28208802
No comments:
Post a Comment
Note: only a member of this blog may post a comment.